
 Closest Pair of Points

Another surprising and satisfying application of the D&C method is the

following algorithm for finding the closest pair of points in a set of points in the

x-y plane.

Assume we have n points, each identified by its x and y coordinates. Our goal is

to find the two points with the minimum distance between them. Obviously we

can solve this problem in O () time by computing the distance between all

pairs of points. It may seem unlikely that we can reduce this, but by clever

design we can eliminate enough of the pairwise distance calculations that we

can achieve a lower complexity.

For reasons that will become clear later, we start by creating a list or array of all

the points sorted by their x-coordinate and another list of all the points sorted

by their y-coordinate. This is a pre-processing phase that sets up the rest of the

algorithm.

In this figure we see the points labelled in left-to-right order. This makes it very

easy to split the set into a Left half and a Right half, which is exactly what we

do. We then recursively solve the problem on the left side and the right side. As

always with a D&C algorithm, when the problem size is some specific

number we solve the problem directly. In this case we might decide that when

the number of points is 3 (or 5, or 10 – it really doesn’t matter what cut-off

value we pick so long as we stick with it), we will compute all the distances

between the points. This takes O(1) time, which means we can treat it as a

constant.

However, after we split the point set into a left side and a right side and solve

the problem recursively on both sides, we are not done. We still have to deal

with the possibility that the two points that are closest together are on opposite

sides of the dividing line. If we compute all the distances between points on the

left and points on the right, we are back with O() complexity.

Fortunately we are able to avoid most of the potential computations. Let be

the minimum distance on the left side, and be the minimum distance on the

right side - we get these values from the recursive applications of the algorithm

to the left and right halves of the set. Let = min(,).

We need to determine if there are two points, one on each side of the dividing

line, that have distance less than from each other. We can eliminate all points

that have distance more than from the dividing line, since they cannot be less

than from any point on the other side of the line.

Imagine a vertical panel or strip, wide, centred on the dividing line

between the left and right sides. The only points we need to consider in this

stage of the algorithm are within this panel.

Take these points in ascending order by y-coordinate (this is why we sorted the

points on their y-coordinates before we started!). For each point p, compute its

distance to the points in the panel above it that might possibly be less than

away.

But wait a minute here. It’s entirely possible that all of the points in the set are

inside this vertical strip. If that happens, and we compute the distance from

each point to all the points above it in the vertical strip, we will be right back to

 complexity. But this is where the algorithm gets really smart. Remember

how the Horowitz/Sahni method reduced the complexity by limiting the

number of pairs we had to check? Well, this is completely different ... but it

achieves the same effect. No matter how many of the points are in the vertical

strip, we don’t have to compute the distances between all of them.

We can imagine a box wide and high with p on its bottom edge. Any

point above p in the vertical strip that could be < away from p must be in this

box.

The following 3 figures show the magical box of holding for each of the lowest

three points in the vertical panel in our example.

By a simple geometric argument there cannot be more than 7 such points (see

my note 1 below). Thus for each point in the vertical panel, we need to compute

no more than 7 distances to other points in the panel – and that takes O(1) time.

Even if all n points are in the panel, the complexity of computing the necessary

distances within the panel is in O(n).

Thus the complexity of the algorithm is given by the recurrence relation

 T(n) = 2*T(n/2) + c*n when n > 3

 T(n) = constant when n 3

(Remember, the “3” is our arbitrarily chosen cut-off value for the recursion. It

can be replaced with any other constant without changing the complexity)

We know this recurrence relation - it is exactly the same one that describes the

complexity of merge-sort. We know that it works out to O(n*log n). This is the

same as the complexity of the pre-processing step, which means that the pre-

processing step is effectively free.

It is worth noting that if we had to re-sort the points at the beginning of each

recursive call, the complexity would be higher. Fortunately we don't - each

reduced set of points is just a subset of the set at the previous level and the

relative order of the points does not change.

Next stop – Greedy Algorithms!

1Note: I have followed the text-book here by saying that there are no more than 7 points to consider.
In class I presented an argument that there can be no more than 5 such points. The argument for 7 such
points depends on allowing identical points in the set, and having the identical pairs on "opposite sides"
of the dividing line. I think this situation can be resolved as a special case. Either way, the number of
point-combinations that must be considered is strictly linear.

