
 Closest Pair of Points

Another surprising and satisfying application of the D&C method is the 

following algorithm for finding the closest pair of points in a set of points in the 

x-y plane.

Assume we have n points, each identified by its x and y coordinates.  Our goal is

to find the two points with the minimum distance between them.  Obviously we

can solve this problem in O ( )   time by computing the distance between all 

pairs of points.  It may seem unlikely that we can reduce this, but by clever 

design we can eliminate enough of the pairwise distance calculations that we 

can achieve a lower complexity.

For reasons that will become clear later, we start by creating a list or array of all 

the points sorted by their x-coordinate and another list of all the points sorted 

by their y-coordinate.  This is a pre-processing phase that sets up the rest of the 

algorithm.  



In this figure we see the points labelled in left-to-right order.  This makes it very 

easy to split the set into a Left half and a Right half, which is exactly what we 

do. We then recursively solve the problem on the left side and the right side.  As 

always with a D&C algorithm, when the problem size is    some specific 

number we solve the problem directly.  In this case we might decide that when 

the number of points is  3 (or 5, or 10 – it really doesn’t matter what cut-off 

value we pick so long as we stick with it), we will compute all the distances 

between the points.  This takes O(1) time, which means we can treat it as a 

constant.

However, after we split the point set into a left side and a right side and solve 

the problem recursively on both sides, we are not done.  We still have to deal 

with the possibility that the two points that are closest together are on opposite 

sides of the dividing line.  If we compute all the distances between points on the 

left and points on the right, we are back with O( ) complexity.  



Fortunately we are able to avoid most of the potential computations.  Let   be 

the minimum distance on the left side, and   be the minimum distance on the 

right side - we get these values from the recursive applications of the algorithm 

to the left and right halves of the set.  Let  = min( , ).  



We need to determine if there are two points, one on each side of the dividing 

line, that have distance less than  from each other.  We can eliminate all points 

that have distance more than  from the dividing line, since they cannot be less 

than  from any point on the other side of the line. 

Imagine a vertical panel or strip,   wide, centred on the dividing line 

between the left and right sides.  The only points we need to consider in this 

stage of the algorithm are within this panel.  



Take these points in ascending order by y-coordinate (this is why we sorted the 

points on their y-coordinates before we started!).  For each point  p, compute its 

distance to the points in the panel above it that might possibly be less than  

away.  

But wait a minute here.  It’s entirely possible that all of the points in the set are 

inside this vertical strip.  If that happens, and we compute the distance from 

each point to all the points above it in the vertical strip, we will be right back to

 complexity.   But this is where the algorithm gets really smart.  Remember

how the Horowitz/Sahni method reduced the complexity by limiting the 

number of pairs we had to check?   Well, this is completely different ... but it 

achieves the same effect.  No matter how many of the points are in the vertical 

strip, we don’t have to compute the distances between all of them.



We can imagine a box  wide and  high with p on its bottom edge.  Any 

point above p in the vertical strip that could be <   away from p must be in this 

box.  

The following 3 figures show the magical box of holding for each of the lowest 

three points in the vertical panel in our example.





By a simple geometric argument there cannot be more than 7 such points (see 

my note 1 below).  Thus for each point in the vertical panel, we need to compute 

no more than 7 distances to other points in the panel – and that takes O(1) time.  

Even if all n points are in the panel, the complexity of computing the necessary 

distances within the panel is in O(n).

Thus the complexity of the algorithm is given by the recurrence relation

        T(n)  =  2*T(n/2)  + c*n            when n > 3

        T(n)  =  constant                        when n   3   

(Remember, the “3” is our arbitrarily chosen cut-off value for the recursion.  It 

can be replaced with any other constant without changing the complexity)

We know this recurrence relation - it is exactly the same one that describes the 

complexity of merge-sort.  We know that it works out to O(n*log n).  This is the 

same as the complexity of the pre-processing step, which means that the pre-

processing step is effectively free.

It is worth noting that if we had to re-sort the points at the beginning of each 

recursive call, the complexity would be higher.  Fortunately we don't - each 

reduced set of points is just a subset of the set at the previous level and the 

relative order of the points does not change.

Next stop – Greedy Algorithms!

1Note:  I have followed the text-book here by saying that there are no more than 7 points to consider.  
In class I presented an argument that there can be no more than 5 such points.  The argument for 7 such
points depends on allowing identical points in the set, and having the identical pairs on "opposite sides"
of the dividing line.  I think this situation can be resolved as a special case.   Either way, the number of 
point-combinations that must be considered is strictly linear.


